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Abstract

The paper presents results of the exact three-dimensional analysis of the natural frequencies and mode
shapes of a rectangular piezoelectric plate poled along the direction perpendicular to the plate middle plane.
The solutions are obtained in non-dimensional form for flexural modes of vibration of a plate simply
supported along the plate edges and two types of electrical boundary conditions on the plate faces, namely
for the case of short and open circuit. A numerically stable algorithm is described, which allows the
calculation of the natural frequencies and mode shapes of the piezoelectric plate. The details of the
algorithm have been found to be especially important in the case of equal wavelengths along the two plate
edges (e.g. for the lowest flexural mode of a square plate). The natural frequencies of a rectangular plate are
given for a rectangular and square plate for the case of short-circuited and open-circuit plate faces, together
with the through-thickness distributions of the mechanical and electric fields. Energy balance for
piezoelectric continua is used to derive two equivalent formulae which extend the Rayleigh quotient used in
free vibration analysis of elastic continua. These expressions are used to verify the consistency of the results
and to obtain additional insight into the phenomenon of electromechanical coupling in a vibrating
piezoelectric plate.
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Nomenclature

a, b plate side lengths
A,B,C,D mode shape constants
cij elements of the elastic stiffness matrix
D electric displacement vector with com-

ponents (Dx, Dy, Dz)

D̄
ðhÞ

x ; D̄
ðhÞ

y ; D̄
ðhÞ

z functions of z̄ describing through-

thickness distribution of non-dimen-
sional components of electric displace-
ment vector

E electric field vector with components
(Ex,Ey,Ez)

eij piezoelectric constants
h plate thickness
kij dielectric constants
K kinetic energy
m, n number of half-waves along the x- and

y-direction
Pel electric power supplied to piezoelectric

plate
Pmech mechanical power supplied to piezo-

electric plate
r ¼ a=b ratio of plate side lengths
T matrix transpose
ux; uy; uz displacements along the co-ordinate

axes as functions of (x,y,z,t)
Ūx; Ūy; Ūz amplitudes of non-dimensional dis-

placements as functions of ðx̄; ȳ; z̄Þ
Ū

ðhÞ

x ; Ū
ðhÞ

y ; Ū
ðhÞ

z functions of z̄ describing through-
thickness distribution of non-dimen-
sional displacements

U internal energy (strain energy+energy
of the electric field)

V volume of the plate
x, y, z coordinates
x̄; ȳ; z̄ non-dimensional coordinates
@V plate boundary (plate faces and all side

planes)
�x; �y; �z strain components
gyz; gxz; gxy engineering shear strains
f electrostatic potential
F̄ amplitude of non-dimensional potential

as a function of ðx̄; ȳ; z̄Þ
F̄ðhÞ

function of z̄ describing through-
thickness distribution of non-
dimensional potential

x ¼ a=h ratio of plate side length along x-axis to
plate thickness

li eight roots which determine the
through-thickness variation of solutions

r mass density
sx;sy;sz stress components
syz; sxz; sxy

ŝ free charge per unit area prescribed on
the surface of piezoelectric plate

ȲðhÞ

x ; ȲðhÞ

y ; ȲðhÞ

z functions of z̄ describing through-
thickness distribution of non-dimen-
sional stresses

ȲðhÞ

yz ; Ȳ
ðhÞ

xz ; Ȳ
ðhÞ

xy

ōmn lowest non-dimensional natural fre-
quency of mode (m,n)

ōðiÞ
mn subsequent branches of non-dimen-

sional natural frequencies of mode (m,n)
ð�̄Þ non-dimensional quantities
ð�̂Þ values prescribed on the boundary
ð�Þ

ðhÞ functions of z̄ describing through-
thickness distributions of mechanical
and electric fields
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1. Introduction

Piezoelectric materials are used in a number of applications thanks to their ability to
convert mechanical energy into electric one and vice versa. Nowadays, the interest
in these materials has increased due to their use as sensors and actuators in smart stru-
ctures. Piezoelectric elements also hold a potential promise of application in microelectro-
mechanical systems (MEMS), miniature mechanical systems integrated with microelectronic
elements.
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A number of dynamic solutions are available for piezoelectric continua, as discussed e.g. in
Refs. [1,2], where solutions are discussed for some wave propagation problems and certain
standing wave problems (such as the through-thickness vibration modes).
Some exact results of three-dimensional (3D) static and dynamic analyses of single-layer and

multiple-layer rectangular plates are also available in the literature. For a uniform and layered
orthotropic plate with no piezoelectric effect, 3D static and natural vibration analysis was done by
Srinivas and Rao [3]. Three-dimensional solutions for the static behaviour of a simply supported
piezoelectric rectangular plate have been obtained by Bisegna and Maceri [4]. Static solutions for
layered piezoelectric simply supported plates are discussed by Heyliger [5], and for more general
boundary conditions by Vel and Batra [6].
The number of papers concerning the 3D problem of piezoelectric plate vibration is limited.

Exact solutions of the free vibration problem of layered piezoelectric plates are discussed for
the case of a plate infinite in one dimension (case of cylindrical bending) in Ref. [7], and for a finite
plate in Ref. [8]. In Ref. [8] the natural frequencies and mode shapes of a square uniform plate are
calculated as a special case of the multi-layered formulation. However, it is pointed out in this
reference that it has been a difficult numerical problem to evaluate the resulting nonlinear eigenvalue
problem and the problem is ill-conditioned. In Ref. [9] the natural frequencies of a single-layer
rectangular piezoelectric plate have been calculated using a different approach based on the transfer
matrix formulation.
Apart from exact solutions, a number of approximate theories of static deformation as

well as the vibrations of piezoelectric plates have been proposed. For the static case one can
refer to Ref. [10] and the literature therein. For the vibration problems, different approxi-
mate plate theories are discussed in Refs. [11–16]. In Ref. [11] asymptotic theory has been
used to derive the approximate theory of piezoelectric plates and shells. The theories discussed in
Refs. [12–16] use some a priori approximations of the mechanical and electric fields in the
through-thickness direction, and the equations of vibration are derived using Hamilton’s
principle.
The present paper discusses the results of exact 3D analysis of a single-layer piezoelectric

rectangular plate. The plate is poled perpendicular to the plate plane and is assumed to be
made of a piezoelectric material from the symmetry class 6mm. A stable numerical algo-
rithm is discussed and natural frequencies and mode shapes are obtained for rectangular
and square piezoelectric plates. In order to verify the calculated natural frequencies and
mode shapes two expressions are derived in the paper which extend the Rayleigh quotient usually
used in the free vibration analysis of elastic bodies. These expressions provide a means of
verifying the results and add to the understanding of the electromechanical coupling
mechanism in vibrating piezoelectric continua, and to the best of the author’s knowledge have
not been used before.
2. Three-dimensional equations of piezoelectric plate vibrations

A rectangular plate with the geometry shown in Fig. 1 is considered. The equations
of free vibration of a piezoelectric continuum, which are discussed in more detail in Refs. [1,2],
consist of the three classical equations of vibration and the electrostatic equation (the Gauss
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Fig. 1. Rectangular plate poled along the z-axis.
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equation of electrostatics):

@sx

@x
þ

@sxy

@y
þ

@sxz

@z
¼ r

@2ux

@t2
;

@sxy

@x
þ

@sy

@y
þ

@syz

@z
¼ r

@2uy

@t2
;

@sxz

@x
þ

@syz

@y
þ
@sz

@z
¼ r

@2uz

@t2
;

@Dx

@x
þ

@Dy

@y
þ
@Dz

@z
¼ 0: ð1Þ

In Eq. (1), Dx, Dy and Dz are the components of the electric displacement vector. A full list of
symbols used throughout the paper is provided in Nomenclature.
The piezoelectric plate is assumed to be made of a ceramic material poled perpendicular to the

plate middle plane. The properties of piezoelectric ceramics are discussed in detail in Ref. [17]. An
important property of piezoelectric ceramics is their cylindrical symmetry about the poling
direction and as a result, as pointed out in Ref. [17], the constitutive equations have the same form
as for a crystal with symmetry class 6mm. For this symmetry class and for a plate poled along the
z-axis the physical equations are given by the following equations:

sx

sy

sz

syz

sxz

sxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

2
666666664

3
777777775

�x

�y

�z

gyz

gxz

gxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

�

0 0 e31

0 0 e31

0 0 e33

0 e15 0

e15 0 0

0 0 0

2
666666664

3
777777775

Ex

Ey

Ez

8><
>:

9>=
>;; (2)

Dx

Dy

Dz

8><
>:

9>=
>; ¼

0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

2
64

3
75

�x

�y

�z

gyz

gxz

gxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

k11 0 0

0 k11 0

0 0 k33

2
64

3
75

Ex

Ey

Ez

8><
>:

9>=
>;: (3)
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Here Ex, Ey and Ez are the components of the electric field vector. For the prescribed symmetry
class c66 ¼ ðc11 � c12Þ=2: It is pointed out that many crystals including quartz have lower
symmetry and the present analysis is not valid for them.
The components of the strains and engineering shear measures appearing in physical equations

(2) and (3) are given by the classical expressions:

�x ¼
@ux

@x
; �y ¼

@uy

@y
; �z ¼

@uz

@z
;

gxy ¼
@ux

@y
þ

@uy

@x
; gxz ¼

@ux

@z
þ

@uz

@x
; gyz ¼

@uy

@z
þ

@uz

@y
: ð4Þ

Moreover, using the quasi-static approximation discussed in Ref. [1], which relies on the fact that
the mechanical wavelengths are much shorter than the lengths of electromagnetic waves of the
same frequency, one can express the electric field vector as a gradient of the electrostatic potential:

E ¼ �rf ¼ ð�@f=@x;�@f=@y;�@f=@zÞ: (5)

Combining Eqs. (1)–(5), a set of four governing equations is obtained in terms of displacements
and the electric potential . The analysis will be done in non-dimensional terms and the following
non-dimensional quantities are defined:

x̄ ¼
x

a
; ȳ ¼

y

b
; z̄ ¼

z

h
; ūx ¼

ux

h
; ūy ¼

uy

h
; ūz ¼

uz

h
; r ¼

a

b
; x ¼

a

h
;

c̄11 ¼
c11

cref
; c̄12 ¼

c12

cref
; c̄13 ¼

c13

cref
; c̄33 ¼

c33

cref
; c̄44 ¼

c44

cref
; c̄66 ¼

c66

cref
;

ē15 ¼
e15

eref
; ē31 ¼

e31

eref
; ē33 ¼

e33

eref
; k̄11 ¼

k11cref

ðeref Þ
2
; k̄33 ¼

k33cref

ðeref Þ
2
;

f̄ ¼
feref

hcref
; ō ¼ oa

ffiffiffiffiffiffiffi
r

cref

r
; t̄ ¼

t

a

ffiffiffiffiffiffiffi
cref

r

r
: ð6Þ

In all numerical calculations the following reference values will be used: cref ¼ c11 and eref ¼ e33:
When the plate undergoes free vibration:

ūxðx̄; ȳ; z̄; t̄Þ

ūyðx̄; ȳ; z̄; t̄Þ

ūzðx̄; ȳ; z̄; t̄Þ

f̄ðx̄; ȳ; z̄; t̄Þ

8>>><
>>>:

9>>>=
>>>;

¼

Ūxðx̄; ȳ; z̄Þ

Ūyðx̄; ȳ; z̄Þ

Ūzðx̄; ȳ; z̄Þ

F̄ðx̄; ȳ; z̄Þ

8>>><
>>>:

9>>>=
>>>;

sinðōt̄Þ: (7)

With the definitions of amplitudes of displacements and potential (7), the four governing
equations of the free vibration problem are written in dimensionless form as follows:

c̄11
@2Ūx

@x̄2
þ c̄66r

2 @
2Ūx

@ȳ2
þ c̄44x

2 @
2Ūx

@z̄2
þ ðc̄12 þ c̄66Þr

@2Ūy

@x̄@ȳ
þ ðc̄13 þ c̄44Þx

@2Ūz

@x̄@z̄
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þ ðē15 þ ē31Þx
@2F̄
@x̄@z̄

¼ �ō2Ūx; ð8Þ1

ðc̄12 þ c̄66Þr
@2Ūx

@x̄@ȳ
þ c̄66

@2Ūy

@x̄2
þ c̄11r

2 @
2Ūy

@ȳ2
þ c̄44x

2 @
2Ūy

@z̄2
þ ðc̄13 þ c̄44Þrx

@2Ūz

@ȳ@z̄

þ ðē15 þ ē31Þrx
@2F̄
@ȳ@z̄

¼ �ō2Ūy; ð8Þ2

ðc̄13 þ c̄44Þx
@2Ūx

@x̄@z̄
þ ðc̄13 þ c̄44Þrx

@2Ūy

@ȳ@z̄
þ c̄44

@2Ūz

@x̄2
þ c̄44r

2 @
2Ūz

@ȳ2
þ c̄33x

2 @
2Ūz

@z̄2

þ ē15
@2F̄
@x̄2

þ ē15r
2 @

2F̄
@ȳ2

þ ē33x
2 @

2F̄
@z̄2

¼ �ō2Ūz; ð8Þ3

ðē15 þ ē31Þx
@2Ūx

@x̄@z̄
þ ðē15 þ ē31Þrx

@2Ūy

@ȳ@z̄
þ ē15

@2Ūz

@x̄2
þ ē15r

2 @
2Ūz

@ȳ2
þ ē33x

2 @
2Ūz

@z̄2

� k̄11
@2F̄
@x̄2

� k̄11r
2 @

2F̄
@ȳ2

� k̄33x
2 @

2F̄
@z̄2

¼ 0: ð8Þ4

The set of equations (8) has to be considered together with the respective boundary conditions.
For a piezoelectric continuum, the general form of boundary conditions is given as follows (for
more details see Refs. [1,2]):

ui ¼ ûi or sijnj ¼ p̂i; f ¼ f̂ or Dini ¼ �ŝ: (9)

In Eq. (9) the index i stands for x; y or z; ni stands for the components of the outward unit
normal to the plate boundary, ûi; p̂i and f̂ are the prescribed displacements, forces and potential,
and ŝ is the prescribed surface free charge (surface charge not including the polarization charge).
For free vibration analysis all right-hand side terms in conditions (9) are equal to zero and the

explicit expressions of the boundary conditions on the plate faces can be written in the following
non-dimensional form (which must hold for z̄ ¼ �1

2
):

Ūx ¼ 0 or c̄44ðx
@Ūx

@z̄
þ
@Ūz

@x̄
Þ þ ē15

@F̄
@x̄

¼ 0; Ūy ¼ 0 or c̄44ðx
@Ūy

@z̄
þ r

@Ūz

@ȳ
Þ þ ē15r

@F̄
@ȳ

¼ 0;

Ūz ¼ 0 or c̄13ð
@Ūx

@x̄
þ r

@Ūy

@ȳ
Þ þ c̄33x

@Ūz

@z̄
þ ē33x

@F̄
@z̄

¼ 0;

F̄ ¼ 0 or ē31ð
@Ūx

@x̄
þ r

@Ūy

@ȳ
Þ þ ē33x

@Ūz

@z̄
� k̄33x

@F̄
@z̄

¼ 0: ð10Þ
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3. Solution algorithm

Assuming the boundary conditions of simple support and zero potential along the plate edges,
the solution is sought in the form

Ūxðx̄; ȳ; z̄Þ

Ūyðx̄; ȳ; z̄Þ

Ūzðx̄; ȳ; z̄Þ

F̄ðx̄; ȳ; z̄Þ

8>>><
>>>:

9>>>=
>>>;

¼

Ū
ðhÞ

x ðz̄Þ cosðmpx̄Þ sinðnpȳÞ

Ū
ðhÞ

y ðz̄Þ sinðmpx̄Þ cosðnpȳÞ

Ū
ðhÞ

z ðz̄Þ sinðmpx̄Þ sinðnpȳÞ

F̄
ðhÞ
ðz̄Þ sinðmpx̄Þ sinðnpȳÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (11)

In Eq. (11), and everywhere in the text, the superscript (h) marks the function which describes the
through-thickness distribution of the respective quantity.
Upon introducing solution (11) into the set of equations (8), the problem is reduced to solving a

system of ordinary differential equations in z̄; with m and n being parameters appearing in the
coefficients. One seeks the solution in the z-direction in the following form:

Ū
ðhÞ

x ðz̄Þ ¼ Aelz̄; Ū
ðhÞ

y ðz̄Þ ¼ Belz̄; Ū
ðhÞ

z ðz̄Þ ¼ Celz̄; F̄ðhÞ
ðz̄Þ ¼ Delz̄: (12)

Upon introducing the solutions (11) and (12) into the governing equations (8), a system of
homogenous linear equations in A, B, C and D is obtained. For a non-trivial solution, the
determinant must be equal to zero. From this condition eight values of l are found, for
the assumed guess value of ō: These eight roots appear as real7pairs and complex conjugate
pairs. For each of the eight values of l; three of the four constants A, B, C and D can be
expressed as multiples of one of them. In principle, the choice here is arbitrary. However, for
the case of equal wave lengths along the plate edges, when m=a ¼ n=b (or m ¼ r n in non-
dimensional form), most of the 3	 3minors of the 4	 4 matrix have been found to be zero from
the numerical point of view for two of the roots l; among them all minors when C or D is taken
as the singled-out constant. This kind of problem was encountered for the flexural mode
of a square plate with m ¼ n ¼ 1 (the results of which are given in Table 4 in the next section) or
for mode (2,1) of a rectangular plate of Table 1. In all studied cases, the minors obtained
by removing the rows and columns with the constants A and B have been found to be nonzero
and the numerical algorithm was stable for the case when m=a ¼ n=b: Therefore, we express
all coefficients in terms of A, and calculate the remaining coefficients from the last three equations.
It is pointed out that if m=aan=b any choice of the singled-out constant was found to give the
same results.
The solution in the z-direction is thus obtained in the form

Ū
ðhÞ

x ðz̄Þ

Ū
ðhÞ

y ðz̄Þ

Ū
ðhÞ

z ðz̄Þ

F̄ðhÞ
ðz̄Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
X8
i¼1

1

biðō; liÞ

giðō; liÞ

diðō; liÞ

8>>><
>>>:

9>>>=
>>>;

Aie
li z̄: (13)
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Expressions (11) and (13) are then introduced into the boundary conditions (10) (any mechanical
and electrical boundary condition can be specified on the plate faces). This results in a
homogenous system of 8 linear equations in Ai. Again, for non-trivial solution the determinant
must be zero. Iteration is done over ō until this condition is met. In the iteration process one first
assumes a guess value of ō and changes the value with a rude step until the determinant changes
sign. The points where the determinant changes sign define the interval with the frequency sought.
This interval is then scanned with a 10 times refined step. By continuing this process it was
possible to find the frequency with very high accuracy. It is pointed out that the determinant
obtained from the boundary conditions turns out to be either real or purely imaginary, depending
on the natural frequency being calculated.
After the natural frequency has been calculated, the through-thickness variation of the

mode shapes is found by solving the homogenous system with one arbitrary scaling factor
left undetermined. The stress components and the components of the electric displacement
vector are then calculated from the known displacements and electric potential using the following
formulae:

s̄x ¼
sx

cref
¼

1

x
c̄11

@ūx

@x̄
þ c̄12r

@ūy

@ȳ
þ c̄13x

@ūz

@z̄
þ ē31x

@f̄
@z̄

� �
;

s̄y ¼
sy

cref
¼

1

x
c̄12

@ūx

@x̄
þ c̄11r

@ūy

@ȳ
þ c̄13x

@ūz

@z̄
þ ē31x

@f̄
@z̄

� �
;

s̄yz ¼
syz

cref
¼

1

x
c̄44 x

@ūy

@z̄
þ r

@ūz

@ȳ

� �
þ ē15r

@f̄
@ȳ

� �
;

s̄xz ¼
sxz

cref
¼

1

x
c̄44 x

@ūx

@z̄
þ
@ūz

@x̄

� �
þ ē15

@f̄
@x̄

� �
;

s̄xy ¼
sxy

cref
¼

c̄66

x
r
@ūx

@ȳ
þ

@ūy

@x̄

� �
;

s̄z ¼
sz

cref
¼

1

x
c̄13

@ūx

@x̄
þ r

@ūy

@ȳ

� �
þ c̄33x

@ūz

@z̄
þ ē33x

@f̄
@z̄

� �
;

D̄x ¼
Dx

eref
¼

1

x
ē15 x

@ūx

@z̄
þ

@ūz

@x̄

� �
� k̄11

@f̄
@x̄

� �
;

D̄y ¼
Dy

eref
¼

1

x
ē15 x

@ūy

@z̄
þ r

@ūz

@ȳ

� �
� k̄11r

@f̄
@ȳ

� �
;

D̄z ¼
Dz

eref
¼

1

x
ē31

@ūx

@x̄
þ r

@ūy

@ȳ

� �
þ ē33x

@ūz

@z̄
� k̄33x

@f̄
@z̄

� �
: ð14Þ

As in the case of displacements and the electrostatic potential, the stress components and
the electric vector components vary harmonically along the x- and y-axis in the
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following manner:

s̄xðx̄; ȳ; z̄; t̄Þ

s̄yðx̄; ȳ; z̄; t̄Þ

s̄zðx̄; ȳ; z̄; t̄Þ

s̄yzðx̄; ȳ; z̄; t̄Þ

s̄xzðx̄; ȳ; z̄; t̄Þ

s̄xyðx̄; ȳ; z̄; t̄Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

ȲðhÞ

x ðz̄Þ sinðmpx̄Þ sinðnpȳÞ

ȲðhÞ

y ðz̄Þ sinðmpx̄Þ sinðnpȳÞ

ȲðhÞ

z ðz̄Þ sinðmpx̄Þ sinðnpȳÞ

ȲðhÞ

yz ðz̄Þ sinðmpx̄Þ cosðnpȳÞ

ȲðhÞ

xz ðz̄Þ cosðmpx̄Þ sinðnpȳÞ

ȲðhÞ

xy ðz̄Þ cosðmpx̄Þ cosðnpȳÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

sinðō t̄Þ; (15)

D̄xðx̄; ȳ; z̄; t̄Þ

D̄yðx̄; ȳ; z̄; t̄Þ

D̄zðx̄; ȳ; z̄; t̄Þ

8><
>:

9>=
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4. Numerical results

In this section numerical results will be discussed for rectangular and square plates free from
mechanical tractions on the faces and for two different electrical boundary conditions, namely the
case of short-circuited (shorted) plate faces (f ¼ 0 on both faces) and open-circuit faces (Dz ¼ 0
on both faces). In non-dimensional form, the mechanical boundary conditions are given explicitly
by the second relations in the first three equations of Eq. (10) and the electrical boundary
condition is given by the first or second expression of the fourth equation (10). The following
material constants for the ceramic PZT4 taken from Ref. [18] are used in the calculations:

c11 ¼ 13:2	 1010ðN=m2Þ; c12 ¼ 7:1	 1010ðN=m2Þ; c13 ¼ 7:3	 1010ðN=m2Þ;

c33 ¼ 11:5	 1010ðN=m2Þ; c44 ¼ 2:6	 1010ðN=m2Þ; c66 ¼ 3:0	 1010ðN=m2Þ;

e15 ¼ 10:5ðC=m2Þ; e31 ¼ �4:1ðC=m2Þ; e33 ¼ 14:1ðC=m2Þ;

k11 ¼ 7:124	 10�9ðF=mÞ; k33 ¼ 5:841	 10�9ðF=mÞ; r ¼ 7:5	 103ðkg=m3Þ: ð17Þ

Similar values of the material constants for the PZT4 ceramic are also given in Ref. [19].
Table 1 shows the non-dimensional circular frequencies ōmn; for m; n ¼ 1; 2; 3; for a thin

rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100; for the case of short-circuited plate faces.
For each pair (m,n) the frequency corresponding to the lowest frequency branch is shown. Similar
results for the case of open-circuit faces are included in Table 2. It is pointed out, that for the
modes in question (lowest frequency branch for a given m and n) one of the two electrical
boundary conditions used has very little effect on the frequencies shown in Tables 1 and 2.
This conclusion agrees with the results for the corresponding modes obtained from 3D analysis in
Ref. [8] and from a two-dimensional theory in Ref. [16]. Table 3 includes the natural frequencies
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Table 2

Lowest non-dimensional circular frequencies of a rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100

m n

1 2 3

1 ō11 ¼ 0:1287 ō12 ¼ 0:4370 ō13 ¼ 0:9482
2 ō21 ¼ 0:2056 ō22 ¼ 0:5134 ō23 ¼ 1:024
3 ō31 ¼ 0:3339 ō32 ¼ 0:6408 ō33 ¼ 1:150

The case of open-circuit plate faces (Dz ¼ 0 on the faces).

Table 3

Lowest non-dimensional circular frequencies of a rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100

m n

1 2 3

1 ō11 ¼ 0:1144 ō12 ¼ 0:3887 ō13 ¼ 0:8430
2 ō21 ¼ 0:1828 ō22 ¼ 0:4564 ō23 ¼ 0:9102
3 ō31 ¼ 0:2969 ō32 ¼ 0:5696 ō33 ¼ 1:022

The case of elastic plate without electromechanical coupling.

Table 1

Lowest non-dimensional circular frequencies of a rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100

m n

1 2 3

1 ō11 ¼ 0:1287 ō12 ¼ 0:4368 ō13 ¼ 0:9476
2 ō21 ¼ 0:2056 ō22 ¼ 0:5132 ō23 ¼ 1:023
3 ō31 ¼ 0:3338 ō32 ¼ 0:6405 ō33 ¼ 1:149

The case of short-circuited plate faces (f ¼ 0 on the faces).
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of a plate with the same geometry as in Tables 1 and 2 but with the electromechanical coupling
not accounted for. These results were obtained by solving the purely mechanical vibration
problem with the constitutive equations (2) in which all piezoelectric constants were assumed to be
equal to zero. Comparing results in Tables 1 and 2 with those of Table 3 it is observed that the
natural frequencies with piezoelectric coupling are higher than those with no coupling. This fact
will be further explained in Section 5.2, using energy concepts.
The plots of the through-thickness variation of the non-dimensional displacements and stress

components are shown in Fig. 2. The plots are given for the mode (1,1) of a rectangular plate
with the geometry and natural frequencies as in Tables 1 and 2. Almost the same mechanical fields
are obtained for the case of short-circuited and open-circuit plate faces. The corresponding
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Fig. 2. Through-thickness variation of non-dimensional displacements and stress components for the lowest mode of a

rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100 (almost the same shapes of mechanical fields were obtained for

the case of short-circuited plate faces (f ¼ 0) and open-circuit faces (Dz ¼ 0)).

P. Cupia! / Journal of Sound and Vibration 283 (2005) 1093–1113 1103



ARTICLE IN PRESS

Fig. 3. Through-thickness variation of the electric fields for the lowest mode of a rectangular plate with r ¼ a=b ¼ 2

and x ¼ a=h ¼ 100; for the case of short-circuited plate faces (f ¼ 0 on both faces).

Fig. 4. Through-thickness variation of the electric fields for the lowest mode of a rectangular plate with r ¼ a=b ¼ 2

and x ¼ a=h ¼ 100; for the case of open-circuit plate faces (Dz ¼ 0 on both faces).

P. Cupia! / Journal of Sound and Vibration 283 (2005) 1093–11131104
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through-thickness distribution of the electric fields is shown in Figs. 3 and 4, respectively, for the
case of short- and open circuit.
The calculated natural frequencies and the values of the mechanical and electric fields were

verified by comparing with finite element results obtained using the coupled-field capability of the
finite element code ANSYS. The comparison of the natural frequencies is included in Ref. [20], for
the rectangular plate of Tables 1 and 2. Good agreement was obtained for both frequencies and
the calculated fields.
Table 4 shows the natural frequencies calculated for a thin square plate, for the case of shorted

faces. Again, the natural frequencies of a plate with open faces differ very little from those
included in Table 4. The natural frequencies of a thick plate with x ¼ a=h ¼ 10 and shorted faces
are shown in Tables 5 and 6, respectively, for a rectangular and a square plate. Even though for
Table 4

Lowest non-dimensional circular frequencies of a square plate with r ¼ a=b ¼ 1 and x ¼ a=h ¼ 100

m n

1 2 3

1 ō11 ¼ 0:0514 ō12 ¼ 0:1287 ō13 ¼ 0:2572
2 ō21 ¼ 0:1287 ō22 ¼ 0:2056 ō23 ¼ 0:3338
3 ō31 ¼ 0:2572 ō32 ¼ 0:3338 ō33 ¼ 0:4616

The case of short-circuited plate faces (f ¼ 0 on the faces).

Table 5

Lowest non-dimensional circular frequencies of a rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 10

m n

1 2 3

1 ō11 ¼ 1:1863 ō12 ¼ 3:4983 ō13 ¼ 6:4858
2 ō21 ¼ 1:8200 ō22 ¼ 3:9972 ō23 ¼ 6:8750
3 ō31 ¼ 2:7866 ō32 ¼ 4:7824 ō33 ¼ 7:5002

The case of short-circuited plate faces (f ¼ 0 on the faces).

Table 6

Lowest non-dimensional circular frequencies of a square plate with r ¼ a=b ¼ 1 and x ¼ a=h ¼ 10

m n

1 2 3

1 ō11 ¼ 0:4969 ō12 ¼ 1:1863 ō13 ¼ 2:2211
2 ō21 ¼ 1:1863 ō22 ¼ 1:8200 ō23 ¼ 2:7866
3 ō31 ¼ 2:2211 ō32 ¼ 2:7866 ō33 ¼ 3:6639

The case of short-circuited plate faces (f ¼ 0 on the faces).
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Table 7

Consecutive frequency branches for mode (1,1) of a rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 10

Short-circuited faces ōð1Þ
11 ¼ 1:1863 ōð2Þ

11 ¼ 5:6006 ōð3Þ
11 ¼ 14:345 ōð4Þ

11 ¼ 15:170
Open-circuit faces ōð1Þ

11 ¼ 1:1948 ōð2Þ
11 ¼ 6:2847 ōð3Þ

11 ¼ 14:345 ōð4Þ
11 ¼ 17:902

Table 8

Consecutive frequency branches for mode (1,1) of a square plate with r ¼ a=b ¼ 1 and x ¼ a=h ¼ 10

Short-circuited faces ōð1Þ
11 ¼ 0:4969 ōð2Þ

11 ¼ 3:5568 ōð3Þ
11 ¼ 14:107 ōð4Þ

11 ¼ 14:457
Open-circuit faces ōð1Þ

11 ¼ 0:4985 ōð2Þ
11 ¼ 3:9963 ōð3Þ

11 ¼ 14:107 ōð4Þ
11 ¼ 17:183
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the thicker plate the difference between the frequencies of the closed- and open-circuit case is
bigger than for thin plates, this difference is still small and the corresponding values of the
frequencies for the open case are not given explicitly (for the mode (1,1) the effect of the electrical
boundary conditions can be read from Tables 7 and 8).
All the results discussed so far concerned the lowest natural frequencies calculated for

a given (m,n). However, higher frequency branches exist for each (m,n) with mode shape
distributions which can differ from those shown in Figs. 2–4. The numerical algorithm of
Section 3 proved equally efficient in calculating these branches. Tables 7 and 8 show the lowest
four branches of the mode (1,1) of a shorted and open case, for a rectangular and square
plate with x ¼ a=h ¼ 10: The frequencies of the lowest branch ōð1Þ

11 coincide with the values shown
in the earlier tables. By comparing the values in Tables 7 and 8 it is seen that the electrical
boundary conditions used can have an important effect on the frequencies of some of the higher
frequency modes.
5. Verification of the calculated natural frequencies and mode shapes

5.1. Verification of some identities valid on the plate faces

In order to verify the consistency of the results, it is interesting to explain the following
properties of the plots of the through-thickness distributions of the electric potential and the
components of the electric displacement vector shown in Figs. 3 and 4. In the case of short-
circuited plate faces (f ¼ 0 on both faces) the calculated x- and y- components of the electric
displacement vector are equal to zero on the plate faces, as can be seen from plots in Fig. 3.
For the case of open-circuit faces both the potential and the x- and y-components of the
electric displacement vector are non-zero, as is seen from Fig. 4. A simple relation between the
potential and the in-plane electric displacement components can be derived, to check for the
accuracy of the results calculated numerically. Since in both cases studied the plate faces are
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free from surface tractions, sxz ¼ syz ¼ 0 on the faces. Then, from the physical equations (2) it
follows that gxz ¼ ðe15=c44ÞEx ¼ �ðe15=c44Þ@f=@x and gyz ¼ ðe15=c44ÞEy ¼ �ðe15=c44Þ@f=@y: In-
troducing these relations into the second set of constitutive equations, and using the definitions of
non-dimensional quantities (6) one arrives at the following relations, which must hold on the face
layers free from mechanical tractions:

D̄x ¼ �k̄11 1þ
ē215

c̄44k̄11

� �
1

x
@f̄
@x̄

and D̄y ¼ �k̄11 1þ
ē215

c̄44k̄11

� �
r

x
@f̄
@ȳ

: (18)

In the case of shorted electrodes f̄ ¼ 0 everywhere on both faces and thus D̄x ¼ D̄y ¼ 0 on the
plate faces, in agreement with the plots shown in Fig. 3. As a check of the consistency of numerical
results shown in Fig. 4, Eqs. (18) were also verified to hold to high accuracy for the case of open-
circuit faces.
5.2. Verification of results using energy concepts

In order to further verify the consistency of the calculated natural frequencies and mode
shapes as well as obtain additional insight into the mechanism of electromechanical coupling
in a vibrating piezoelectric plate, formulae will be derived which generalize to piezoelectricity
the Rayleigh quotient used in the free vibration of elastic continua. Two such expressions
are derived below using the governing equations (8)1–(8)4 of the free vibration problem.
A different derivation, directly from the energy balance for a piezoelectric continuum is given
in Appendix A.
To obtain the first expression of the Rayleigh quotient, one starts with the equations of free

vibrations (8)1–(8)3, which can be written in the following equivalent form:
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@Ūx

@ȳ
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Here, the functions Ūx; Ūy; Ūz; F̄ are the mode shapes corresponding to the frequency ōmn:
One multiplies Eqs. (19)1–(19)3 respectively by Ūx; Ūy; Ūz and integrates over the plate volume.
Integrating by parts over x̄; ȳ and z̄ and using the boundary conditions (10) (specified on the plate
faces) and the boundary conditions of simple support and zero potential on the plate sides (which
are satisfied by the assumed shapes (11)) one can show that the boundary terms vanish, and the
following expression for the Rayleigh quotient is obtained:

ō2
mn ¼

Num

Denom
; (20)
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@Ūz

@x̄

� �2

þ c̄44 x
@Ūy
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@Ūy

@ȳ
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An alternative expression of the Rayleigh quotient can be obtained using the electrostatic
equation (84), which can be written in the following form:
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@Ūx

@z̄
þ

@Ūz
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þ ē33x

@Ūz
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One multiplies Eq. (21) by F̄ and integrates over the volume of the plate. Performing integration
by parts and using the fact that the boundary terms can be shown to vanish, the following identity
is obtained:
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Using relation (24) in Eq. (22) the following equivalent expression for the numerator of the
Rayleigh quotient is obtained:
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This can be used in quotient (20) with the denominator defined as previously (Eq. (22)).
Both expressions of the Rayleigh quotient have been used to check for the consistency of the

calculated natural frequencies and mode shapes. The calculated mode shapes were introduced into
any of the two expressions of the quotient and thus the natural frequency has been calculated in a
different way. The same frequencies have been found using any of the two quotients, which were
in perfect agreement with the value found as a solution of the eigenvalue problem.
The derived expressions of the Rayleigh quotients can be used to provide additional insight into the

electromechanical coupling phenomenon in the vibrating piezoelectric plate. To illustrate this let us take
the case of a rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100: For this plate the natural
frequencies calculated for two different electrical boundary conditions were found to be very close for
the lowest frequency branch, as shown in Tables 1 and 2. However, these values are higher than the
corresponding values without a piezoelectric coupling (as seen by comparing with Table 3). To
investigate electromechanical coupling, one can split numerator (25) into the mechanical part (including
only displacements) and the electrical part (with electrostatic potential only). For the plate geometry of
Tables 1 and 2, for both shorted and open electrical boundary conditions on the plate faces, these terms
are very close, and for the mode (1,1) the mechanical part accounts for 84% of the overall numerator
value whereas the electrical part for 16%. As a result, the electric field is not negligible and results in
natural frequencies higher than for a plate without the electromechanical coupling.
Furthermore, using the plots in Figs. 2–4 it is possible to justify why the natural frequencies in

Tables 1 and 2 depend little on one of the two electrical boundary conditions used. In fact, the
electrical contribution to the numerator (25) is given by
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The first two terms are small compared to the third one, especially for thin plates for which x is
high. It is also seen from Figs. 3 and 4 that for the two electrical boundary conditions used the
potential varies almost quadratically in the thickness direction. One can verify from the plots that
the quadratic term coefficient is almost the same in both cases. Since the linear term is zero (both
plots have zero derivative at z̄ ¼ 0) the two potential distributions are very close, with the
exception of a constant term. As a result the last derivative in Eq. (26) is very much the same for
the two cases and the contribution of the electrical part is almost the same. Since the mechanical
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shapes are very similar for the two cases, the natural frequencies of the modes in question are not
sensitive to electrical boundary conditions, especially for thin plates.
It is also pointed out that the mechanical fields calculated from the coupled problem are not

identical to those calculated from the uncoupled elastic problem. The natural frequency calculated
from the mechanical part of quotient (20) (using the displacements calculated from the coupled
problem) for mode (1,1) of the rectangular plate with r ¼ a=b ¼ 2 and x ¼ a=h ¼ 100 was found
to be equal 0.1178. The square root of the corresponding quotient in the absence of
electromechanical coupling (which is equal to the natural frequency), can be read from Table 3
and is equal to 0.1144.
6. Conclusions

The approach discussed in the paper allows the exact 3D analysis of the natural frequencies of
simply supported rectangular plates with arbitrary boundary conditions specified on the plate
faces, as well as introduces energy concepts which add greatly to the understanding of the
obtained results. The algorithm used is numerically stable, but the details of the algorithm were
found to be important in the case when m=a ¼ n=b; as explained in Section 3. Numerical results
were obtained for rectangular and square plates with faces free from mechanical tractions and for
two different electrical boundary conditions applied on the plate faces, namely for the case of
shorted faces (f ¼ 0) or the case of open faces (Dz ¼ 0). For both electrical boundary conditions
studied, a strong electromechanical coupling exists. This is reflected e.g. by a high value of electric
potential generated during vibration (for the case of shorted faces shown in Fig. 3 and the plate
thickness h ¼ 0:001 ðmÞ the maximum potential during vibration with the first mode shape with
amplitude equal to one tenth of the plate thickness is found to be about 100V). In spite of this
coupling, the natural frequencies of the lowest flexural modes are almost the same for the two
kinds of boundary conditions used. This is unlike in the case of through-thickness vibration
modes (which have been discussed e.g. in Ref. [1]) where one can show that the type of electrical
boundary conditions has an important effect on the natural frequencies, and unlike for some
higher frequency branches calculated in the present paper. Energy concepts have been used to
derive two expressions which extend the Rayleigh quotient applied in the free vibration analysis of
elastic structures. These expressions have been found valuable in the verification of the
consistency of the calculated natural frequencies and the mode shapes and in the study of the
effect of the electromechanical coupling in the vibrating piezoelectric plate.
Appendix A

In this appendix, an outline is given of an alternative derivation of Eqs. (20)–(22) and (25),
which extend the Rayleigh quotient to the free vibration of piezoelectric continua.
The balance of energy of a piezoelectric continuum can be written in the following form (more

details can be found in Ref. [1,2]):

d

dt
ðK þ UÞ ¼ Pmech þ Pel: (A.1)
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In Eq. (A.1), K stands for the kinetic energy of the plate, U is the overall internal energy (which
consists of the strain energy and the energy of the electric field), Pmech and Pel are respectively the
mechanical and electric power supplied to the piezoelectric continuum. These quantities are
defined as follows:
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(A.3)

Pmech ¼

Z
V

Fx
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dð@V Þ; (A.4)

Pel ¼ �
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@t

� �
dð@V Þ:

(A.5)

Here Fx, Fy, Fz are components of the mechanical forces per unit volume, p̂x; p̂y; p̂z are
components of the prescribed surface tractions, V is the volume of the plate, @V is the plate
boundary (consisting of the plate faces and sides), nx; ny; nz are the components of the unit
outward normal to the plate boundary.
For free vibration, the volume forces and the surface tractions on the plate faces vanish.

Moreover, it can be verified using the assumed fields (11) that there is no mechanical power
supplied to the plate through the plate sides. Similarly, using second of formulae (A.5) one can
show that for free vibration no electric power is supplied to the system. As a result, conservation
of energy holds:

d

dt
ðK þ UÞ ¼ 0: (A.6)

For free vibration,

uxðx; y; z; tÞ

uyðx; y; z; tÞ

uzðx; y; z; tÞ

fðx; y; z; tÞ

8>>><
>>>:

9>>>=
>>>;
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Uxðx; y; zÞ

Uyðx; y; zÞ

Uzðx; y; zÞ

Fðx; y; zÞ

8>>><
>>>:

9>>>=
>>>;

sin ðomntÞ: (A.7)
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Introducing relations (A.7) into the balance of energy (A.6) one can obtain the following equation
for the natural frequency:

o2
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Num
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; (A.8)

where
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and

Denom ¼
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0

Z b

0
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y þ U2

zÞdxdydz: (A.10)

Using non-dimensional quantities, this is identical to formulae (20), (25) and (22), derived in
Section 5.2 directly from the governing equations of the problem.
An alternative formula for the numerator of the Rayleigh quotient can be obtained by replacing

the surface integral by the volume integral according to formula (A.5), and using the energy
balance in the form:
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As a result, the equivalent expression for the numerator of the Rayleigh quotient reads as follows:
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In non-dimensional form expression (A.12) is identical to formula (21) of Section 5.2.
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